Corn Stover Co-Products

A Course for Commercialization

BioEnergy Conference

October 18, 2000

Jim Hettenhaus, cea Inc & Tom M. Schechinger, B/MAP LLC

Corn Stover Co-Product Choices

- From Biomass to Ethanol Perspective
 - Convert cellulose to glucose sugars, and then ferment to ethanol and other products, \$100/ton or more

OR

- Replace hardwood fiber, \$200/ton to \$800/ton, with cellulose pulp from corn fiber
- From Agri-Pulp Perspective
 - Burn hemicellulose sugars with lignin

OR

Remove Fermentation Sugar in Pretreatment

Corn Stover Co-Product Revenue

Pro Forma Revenue			
1000 DryTons per Day			
	EtOH	Mech Pulp	90 Bright
Component	\$1/Gal	\$200/ton	\$800/ton
Cellulose	\$18	mix	\$70
Other Sugars	\$12	mix	\$18
Total Revenue	\$30	\$ 66	\$88

OVERVIEW

- The Past is Prologue
- Process Economics
- Drivers
 - Market Need
 - Producer Benefits
 - Environmental Impact
- Enabling Technologies
- Future Outlook

Past is Prologue

- Non-Wood plants exclusively supplied fiber
- Wood became a factor in 1850's
- Straw and corn stover disappeared in US
 - Combine Harvesting
 - Storage Problems
 - Competition from Wood
- Agri-pulp still important in China and India
- Re-emerging in North America as "tree free"

Process Economics

- Co-Location of Fermentation and Pulp Plants
 - Shared Infrastructure
 - Less Capital
 - Shortened Start-Up Schedule
- Process Confirmation
 - Chemical Usage
 - Enzyme Hydrolysis
 - Product Qualities
 - Energy Required

Process Development

"PRETREATMENT" BALANCE

- Pulp—Fiber Properties
 - Depithing
 - Acid Hydrolysis
- Sugars—Fermentation
 - rFermentation Strain
 - Inhibitors

Market Drivers

- Paper Market Growth
- Producer Benefits
- Environmental Benefits

Paper Growth

- 2000 World Wide Market--300 Million tons
- North America Market--100 Million tons
 - 30% Softwood
 - 30% Hardwood
 - 40% Recycle
- 2010 Market Forecasted to be 400 million tons
- Electronic Office?
 - Office Paper Growth is 20% annually
- Source of Fiber?

Agri-Pulp Fiber Alternative

- Pulp and Paper Industry Perception
 - Does not fit process
 - Weaker fibers
- Corn Stover Fiber
 - Same length as hardwood fiber
 - Coarseness superior to straw
- Agri-Pulp: Replace Hardwood Fibers
 - Supply non-integrated paper market
 - "Tree Free" applications

Grower Benefits

- Remove Excess Stover
 - Reduces
 - -Tillage

- Erosion
- Pest and Weed Harbor Chemicals
- Phosphate and Potassium
- Soil Moisture Impact
- Replace Nutrients, P & K, as Required
- N Fertilizer is more complex
- Increase Revenue from Sale
- Sequester Carbon from Roots If No-Till

Environmental Benefits

- Improved Residue Management
 - Less Soil Erosion, Chemicals
 - Reduced Water Pollution
 - Groundwater
 - Runoff
- Less Trees to Tissue
- Greenhouse Gas Mitigation

GHG Mitigation from Corn Stover is 12% to 20% of US Kyoto Reduction

(30% of total, 77 million dry tons)

•	US Emissions, MMTCE, 2008-121,740
•	Kyoto Required Reduction 496
•	Corns stover Potential, 62- 97
	 Fossil Fuel replacement,
	5.6 to 8 Bil Gal EtOH 45 to 64
	N Fertilizer reduction
	1.6 MM MT N Fertilizer 1 to 17
	Reduced Tillage,
	50% of 32 MM ha Corn
	0.5 M TC/ha/yr

Enabling Technologies

- Plant Sciences
 - Fiber Properties
 - Greater Yields
- Collection Cost Reduction
 - More Stover Per Ha (acre)
 - Collection Improvements
- Metabolic Engineering—rFermentation Strains
- Process Improvements
 - Yields
 - Enzymes replace chemicals

CORN STOVER Largest Biomass Feedstock

Corn Stover, dry tons

- 255 M tons produced
- 153 M tons available, 60%

or 43% of Total Biomass

All less than \$50/ton

- Corn Stover 153 M dry tons
- Other Ag Stover.. 58
- Corn Fiber 4
- Energy Crops 70
- Wood Co-Products. <u>72</u>TOTAL dry tons . . 357M

IMPACT Processing 30% of Corn Stover

- Replaces fiber now supplied from hardwood trees for paper
- Adds 5 to 8 billion gallons of Ethanol
- \$3 Billion Farm Income from Feedstock Sale, \$35/dry ton delivered- \$10 million per county
- Mitigates GHGs by 12% 20% US Kyoto
 Commitment

BALE STORAGE 60,000+ Bales in Jan '97

